Chem. Ber. 117, 2886 - 2899 (1984)

Teilsubstituierte Tetrazene (Me₃E)_nN₄H_{4-n} (E = Si, Ge, Sn): Darstellung, Charakterisierung und Thermolyse¹⁾

Nils Wiberg*, René Meyers, Sham Kumar Vasisht und Heiner Bayer

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, D-8000 München 2

Eingegangen am 7. November 1983

Teilsubstituierte Tetrazene $(Me_3E)_n N_4 H_{4-n}$ (E = Si, Ge, Sn) können durch Protolyse höher substituierter Tetrazene $(Me_3E)_n N_4 H_{4-n}$ (o > n) oder durch Silylierung, Germylierung bzw. Stannylierung niedriger substituierter Tetrazene $(Me_3E)_m N_4 H_{4-m}$ (m < n) dargestellt werden. Die gewonnenen Tetrazene (Tab. 1) sind farblose Verbindungen: sie haben 2-Tetrazen-Konstitution und *trans*-Tetrazen-Konfiguration. Die Tetrazene $(Me_3Si)_2 N - N = N - NHX$ (X = H oder GeMe_3) isomerisieren sich in verdünnter Lösung beim Erhitzen in $(Me_3Si)XN - N = N - NH(SiMe_3)$. Die Hauptthermolyse von $(Me_3Si)_2 N - N = N - NH(SiMe_3)$ führt zu Me_3SiN_3 und $(Me_3Si)_2 NH$ ($t_{1/2}^{140^\circ C} = \frac{3}{4}$ h), von $(Me_3Si)_2 N - N = N - NH(SiMe_3)$ zu N_2 und $(Me_3Si)_2 N - NH_2$ (verdünnte Lösung; $t_{1/2}^{40^\circ C} > 1$ h) oder zu HN_3 und $(Me_3Si)_2 NH$ (konzentrierte Lösung; $t_{1/2}^{140^\circ C} < 1$ h).

Partially Substituted Tetrazenes $(Me_3E)_n N_4 H_{4-n}$ (E = Si, Ge, Sn): Preparation, Characterization, and Thermolysis¹

Partially substituted tetrazenes $(Me_3E)_nN_4H_{4-n}$ (E = Si, Ge, Sn) can be prepared by protolysis of higher substituted tetrazenes $(Me_3E)_nN_4H_{4-n}$ (o > n) or by silylation, germylation, or stannylation of lower substituted tetrazenes $(Me_3E)_mN_4H_{4-m}$ (m < n). The obtained tetrazenes (Tab. 1) are colorless compounds; they have 2-tetrazene constitution, and *trans*-tetrazene configuration. The tetrazenes $(Me_3Si)_2N - N = N - NHX$ (X = H or GeMe_3) isomerize by heating in dilute solution into $(Me_3Si)_2N - N = N - NHX$ (X = H or GeMe_3) isomerize by heating in dilute solution into $(Me_3Si)_2N - N = N - NHX$ (X = H or GeMe_3) isomerize by heating in dilute solution into $(Me_3Si)_3$ and $(Me_3Si)_2NH$ ($\tau_{1/2}^{140^\circ C} = \frac{3}{4}$ h), of $(Me_3Si)_2N - N = N - NH_2$ to Me_3SiN_3 and Me_3SiN_4 (concentrated solution; $\tau_{1/2}^{140^\circ C} < a \cdot \frac{1}{4}$ h), and of $(Me_3Si)HN - N = N - NH$. (SiMe_3) to N_2 and $(Me_3Si)_2N - NH_2$ (dilute solution; $\tau_{1/2}^{140^\circ C} > 1$ h) or to HN_3 and $(Me_3Si)_2NH$ (concentrated solution; $\tau_{1/2}^{140^\circ C} > 1$ h).

Wie aus einer früheren Mitteilung⁴⁾ über die Reaktivität "vollsubstituierter" Tetrazene $(Me_3E)_2N - N = N - N(EMe_3)_2$ (E = Si, Ge, Sn) hervorgeht, lassen sich die EMe₃-Gruppen letzterer Verbindungen unter geeigneten Bedingungen sukzessiv durch Wasserstoff ersetzen. Hierbei gebildete "teilsubstituierte" Tetrazene des Typs 1-3 (Schema 1) sind Gegenstand dieser Mitteilung (für Einzelverbindungen vgl. Tab. 1).

Darstellung von $(Me_3E)_n N_4 H_{4-n}$

Teilsubstituierte Tetrazene (Me₃E)_nN₄H_{4-n} (E = Si, Ge, Sn) lassen sich ausgehend von höher substituierten Tetrazenen (Me₃E)_oN₄H_{4-o} (o > n) durch *Protolyse* (Me₃E/H-Austausch) oder ausgehend von niedriger substituierten Tetrazenen (Me₃E)_mN₄H_{4-m} (m < n) durch Silylierung, Germylierung oder Stannylierung (H/Me₃E-Austausch) gewinnen. Sonstige Methoden sind von untergeordneter Bedeutung.

Protolyse. Die Protolyse einheitlich oder gemischt substituierter Tetrazene $(Me_3E)_oN_4H_{4-o}$ erfolgt ganz allgemein nach dem Schema 1 auf dem Wege von links oben nach rechts unten. So läßt sich Tetrakis(trimethylsilyl)tetrazen $(Me_3Si)_4N_4$ mittels Trifluoressigsäure in Dichlormethan bei -78 °C über 1, 2b und 3 (E = Si) letztendlich in Tetrazen N_4H_4 umwandeln^{4,5)}. Entsprechend dem Molverhältnis von $(Me_3Si)_4N_4$ und CF₃CO₂H entstehen hierbei Gemische, die 1, 2b oder 3 (E = Si) als Hauptkomponente enthalten. Aus ihnen kann das betreffende Tetrazen durch sorgfältige Destillation abgetrennt werden. Das durch Protolyse von $(Me_3Si)_4N_4$ nicht zugängliche Tetrazen 2**a** (E = Si) bildet sich durch Protolyse von Tris(trimethylsilyl)tetrazen 1 (E = Si) mit Methanol in Pentan bei 5°C⁴⁾.

Schema 1. Protolyse bzw. Me_3E -ierung von Tetrazenen (E = einheitlich oder gemischt Si, Ge, Sn)

Viel leichter als tetrazengebundene Silyl- lassen sich tetrazengebundene Germylgruppen durch Wasserstoff ersetzen. So wird Tetrakis(trimethylgermyl)tetrazen, $(Me_3Ge)_4N_4$, bereits mit Methanol in Benzol bei Raumtemperatur in Gemische der teilgermylierten Tetrazene 1, 2a und 2b (E = Ge) verwandelt⁴⁾. Allerdings konnten die einzelnen Tetrazene durch fraktionierende Destillation bzw. Kristallisation bisher nur angereichert, jedoch noch nicht in Reinsubstanz isoliert werden. Die leicht erfolgende Protolyse der tetrazengebundenen Me₃Ge-Gruppen zeigt sich auch in der Umsetzung von 1,1-Bis-(trimethylgermyl)-4,4-bis(trimethylsilyl)tetrazen, (Me₃Si)₂N₄(GeMe₃)₂, mit Methanol, welche auf dem Wege über (Me₃Si)₂N₄H(GeMe₃) (4a) ausschließlich zu 2a (E = Si) führt. In analoger Weise erhält man aus 1,4-Bis(trimethylgermyl)-1,4-bis(trimethylsilyl)tetrazen, (Me₃Si)(Me₃Ge)N₄(SiMe₃)(GeMe₃), auf dem Wege über (Me₃Si)(Me₃Ge)N₄H-(SiMe₃) (4b) das Tetrazen 2b (E = Si). In beiden Fällen stellt man aber die Protolysezwischenprodukte (4a, b) besser nach nachfolgend beschriebener Methode dar.

Silylierung, Germylierung, Stannylierung. Der Austausch von Wasserstoff gegen Me₃E-Gruppen (E = Si, Ge, Sn) in einheitlich oder gemischt substituierte Tetrazene $(Me_3E)_mN_4H_{4-m}$ erfolgt ganz allgemein nach dem Schema 1 auf dem Wege von rechts unten nach links oben. So läßt sich etwa Tetrazen mittels Me₃ENEt₂ (E = Ge, Sn) auf dem Wege über 3, 2b und 1 letztendlich in die tetrasubstituierten Tetrazene (Me₃E)₄N₄

überführen⁶⁾. Das Verfahren ist insbesondere zur Darstellung gemischt-substituierter Tetrazene von Bedeutung. Z. B. kann 1,1-Bis(trimethylsilyl)tetrazen (**2a**, E = Si) mit Me₃ENEt₂ (E = Ge, Sn) glatt in die trisubstituierten Tetrazene **4a** und **5a** umgewandelt werden.

$$2a (E = Si) \xrightarrow{+Me_3ENEt_2} Me_3Si N-N=N-N H Ge 4a$$

$$Me_3Si N-N=N-N H Sn 5a$$

In analoger Weise läßt sich 1,4-Bis(trimethylsilyl)tetrazen (**2b**, E = Si) zum Tetrazen (Me₃Si)(Me₃Sn)N₄H(SiMe₃) (**5b**) stannylieren, aber nicht germylieren. Das Germyltetrazen (Me₃Si)(Me₃Ge)N₄H(SiMe₃) (**4b**) bildet sich demgegenüber aus Me₃ECl und dem Tetrazen **2b** (E = Si) nach dessen Überführung in ein Tetrazenid.

$$2b (E = Si) \xrightarrow{+BuLi}_{-BuH} \xrightarrow{Me_3Si}_{Li} N-N=N-N \xrightarrow{SiMe_3}_{H} \xrightarrow{+Me_3ECi}_{-LiCi} \xrightarrow{Me_3Si}_{Me_3E} N-N=N-N \xrightarrow{H}_{H} \xrightarrow{Ge} \xrightarrow{4b}_{Sn} \xrightarrow{SiMe_3}_{SiMe_3} \xrightarrow{E}_{H} \xrightarrow{Fi}_{SiMe_3} \xrightarrow{Fi$$

Die Tendenz zum H/EMe₃-Austausch gemäß Me₃E – NR₂ + – NH_n(E'Me₃)_{2-n} → n HNR₂ + – N(EMe₃)_n(E'Me₃)_{2-n} wächst im Fall der Amine Me₃ENR₂ in der Reihenfolge Me₃SiNR₂ < Me₃GeNR₂ < Me₃SnNR₂ (R = Me, Et) und im Fall der Tetrazene – NH_n(E'Me₃)_{2-n} in der Reihenfolge – NH(SiMe₃) < – NH(GeMe₃) < – NH(SnMe₃) < – NH₂ (wiedergegeben ist jeweils nur die Aminogruppe der Tetrazene). So läßt sich etwa 1 (E = Si) sowie 2b (E = Si) in der beschriebenen Weise nur stannylieren, 1 (E = Ge) sowie 2a (E = Si) auch germylieren⁴). Das gegenüber 2 (E = Si) nicht als Silylierungsmittel wirkende Me₃SiNMe₂ katalysiert andererseits die 2-Thermolyse (s. u.).

Sonstige Methoden. Vorstufe für alle bisher beschriebenen teilsubstituierten Tetrazene ist letztlich Tetrakis(trimethylsilyl)tetrazen. Man erhält es durch Dimerisierung von Bis(trimethylsilyl)diimin⁶: $2Me_3Si - N = N - SiMe_3 \rightarrow (Me_3Si)_2N - N = N - N - (SiMe_3)_2$. In entsprechender Weise läßt sich 1 (E = Si) in mäßiger Ausbeute aus Bisund Mono(trimethylsilyl)diimin gewinnen, wobei letztere Azoverbindung ihrerseits durch Hydrolyse aus ersterer entsteht⁷): $Me_3Si - N = N - SiMe_3 + Me_3Si - N = N - H \rightarrow (Me_3Si)_3N - N = N - NH(SiMe_3).$

Ein weiteres Darstellungsverfahren für teilsubstituierte Tetrazene besteht in der weiter unten ausführlich diskutierten thermischen Isomerisierung von Tetrazenen: $2a \rightarrow 2b$ (E = Si); $4a \rightarrow 4b$.

Charakterisierung von $(Me_3E)_n N_4 H_{4-n}$

In Tab. 1 sind einige *Kenndaten* der bisher isolierten bzw. nachgewiesenen teilsubstituierten Tetrazene zusammen mit der besten Methode ihrer Synthese wiedergegeben. Die Verbindungen sind alle farblos, hydrolyseempfindlich sowie gegen Sauerstoff stabil und zersetzen sich thermisch zum Teil bei Raumtemperatur (s.u.).

Da die in Tab. 1 aufgeführten Tetrazene 1-5 aus den Tetrazenen (Me₃Si)₄N₄ bzw. N₄H₄ durch Substituentenaustausch zugänglich sind, kommt ihnen offensichtlich wie diesen^{8,9)} eine *Struktur* A mit *trans*-2-Tetrazengerüst zu. Alle ¹H-NMR-Daten (vgl. Tab. 1) stehen hiermit in Übereinstimmung.

							מוכוו כוווואכ		e (Me3E) ⁿ l	4H4-n			
		H2N-N	=N-N		-								
	R1	R ²	R,	R ⁴	Edukt	sdp. [°C] i. Hochvak.	Solvens	¹ .Η-Ν δ(R ¹)	MR [ppm] δ(R ²)	δ(R ³)	HNV	IR [cm ⁻¹] V _{N=N}	N - N
1 (E = Si)	Me ₃ Si	Me ₃ Si	Me ₃ Si	н	(Me ₃ Si) ₄ N ₄ Protolyse	31 - 33	C ₅ H ₁₂ C ₆ H ₂	0.183 0.311	0.183 0.311	0.183 0.100 ^{a)}	3434 s 3310 s	1468 m	1168 m 1053 sst
1 (E = Ge)	Me ₃ Ge	Me ₃ Ge	Me ₃ Ge	Н	(Me ₃ Ge) ₄ N ₄ Protolyse	(4	CH12 CH12	0.345 0.467	0.345 0.467	0.325 0.317			
4a	Me ₃ Si	Me ₃ Si	Me ₃ Ge	Н	2a (E = Si) Germylier.	40	CH12 CH12	0.150 0.328	0.150 0.328	0.358 0.263	3406 ss 3300 ss	1455 m	1175 m 1050 sst
4b	Me ₃ Si	Me ₃ Ge	Me ₃ Si	Н	2b ($E = Si$) Germylier.	35	C ₅ H ₁₂ C ₆ H,	0.167 0.325	0.383 0.463	0.158 0.125	3436 s 3315 s	1460 s	1170 m 1060 sst
5a	Me ₃ Si	Me ₃ Si	Me ₃ Sn	Н	2a (E = Si) Stannylier.	c)	C ₆ H ₁₂ C ₆ H,	0.163 0.308	0.163 0.308	0.302 0.183 ^{d)}			
5b	Me ₃ Si	Me ₃ Sn	Me ₃ Si	Н	2b ($\mathbf{E} = \mathbf{Si}$) Stannylier.	c)	C ₅ H ₁₂ C ₆ H,	0.160 0.303 ^{d)}	0.267 0.325	0.160 0.112			
$\begin{array}{l} \mathbf{2a}\\ (\mathbf{E}\ =\ \mathrm{Si}) \end{array}$	Me ₃ Si	Me ₃ Si	Н	Н	1 (E = Si) Protolyse	15 - 20	c ₅ H ₁₂ C ₆ H ₆	0.187 0.267	0.187 0.267	6.3	3395 s 3260 ss	1493 ss	1125 s 1055 st
2b (E = Si)	Me ₃ Si	н	Me ₃ Si	Н	(Me ₃ Si) ₄ N ₄ Protolyse	10	C,H ₁₂ C,H ₁₂	0.150 0.142	6.0	0.150 0.142	3435 s 3400 s 3310 s	1488 (?)	1150 m 1097 sst
$\begin{array}{l} \mathbf{2a}\\ (\mathbf{E}\ =\ \mathbf{Ge}) \end{array}$	Me ₃ Ge	Me ₃ Ge	Н	н	(Me ₃ Ge) ₄ N ₄ Protolyse	(q	C ₆ H ₆	0.428	0.428				
$\begin{array}{l} \mathbf{2b} \\ (\mathbf{E} \ = \ \mathbf{Ge}) \end{array}$	Me ₃ Ge	Н	Me ₃ Ge	Н	(Me3Ge)4N4 Protolyse	(q	C ₅ H ₁₂ C ₆ H	0.333 0.317		0.333 0.317			
£	Me ₃ Si	Н	Н	Н	2b (E = Si) Protolyse	()	CH ₂ Cl ₂	0.202					
a) NH: $\delta =$ liert ⁴). Eind von flüssig	(6.2, -b) e Reinisolier em (Me ₃ Ge) 56 Hz, J^{11}	Bisher nur rung der T(₁ N ₄ H bzw. Sn = 59 J	in Form vo. etrazene ist . (Me ₃ Ge)H Hz. – ^{e)} Bi	n Gem wegen N4H(G sher nu	ischen (Me ₃ Ge) rasch erfolgen ieMe ₃) möglich ir in CH, Ch-L	h,N4H4- n (r der (reversit ierweise eine ösung ⁴).	t = 2 - 4) r oler) Umger en Feststoff	nit maxim rmylierung dar. – c)	al 70% (M en erschw Nur in L¢	le ₃ Ge) ₃ N ₄ ert. (Me ₃ C isung bei	H bzw. 80 ⁶ 3e) ₂ N ₄ H ₂ s. tiefen Tem	% (Me ₃ Ge), tellt zum U peraturen h	N ₂ H ₂ iso- nterschied altbar

Die Aktivierungsbarrieren für die Rotation der azogebundenen – wohl teils planaren (N(EMe₃)₂ und NH(EMe₃))⁸), teils pyramidalen (NH₂)⁹⁾ – Aminogruppen um die N – N-Einfachbindungen dürften wie im Fall von (Me₃E)₄N₄⁶) < 40 kJ/mol betragen, da im ¹H-NMR-Spektrum selbst bei sehr tiefen Aufnahmetemperaturen keine Signalaufspaltungen beobachtet werden. Für die Existenz derartiger – wenn auch sehr kleiner – Barrieren sprechen u.a. die Infrarotspektren der trisubstituierten Tetrazene 1 (E = Si) und 4, in welchen jeweils 2 Absorptionen für die NH-Schwingungen erscheinen (Tab. 1). Sie können Konformationsisomeren mit endo- bzw. exo-ständigem Wasserstoff zugeordnet werden.

Bei Erwärmen verdünnter Lösungen von 2a (E = Si) auf 100 °C beobachtet man eine rasche *Isomerisierung* des Tetrazens in 2b (E = Si). In analoger Weise lagern sich 2a (E = Ge) in 2b (E = Ge) und 4a in 4b um (eine entsprechende Umwandlung von (Me₃Si)₂N₄(GeMe₃)₂ in (Me₃Si)(Me₃Ge)N₄(SiMe₃)(GeMe₃) wurde bereits an anderer Stelle⁶) erwähnt). Offenbar vermögen Wasserstoff, Silyl-, Germyl- und wohl auch Stannylgruppen in Tetrazenen (Me₃E)_nN₄H_{4-n} ihre Plätze zu vertauschen. Die etwas eingehender untersuchte Isomerisierung 2a \rightarrow 2b (E = Si) erfolgt nach 1. Reaktionsordnung, also intramolekular. Die Isomerisierungshalbwertszeit beträgt bei 94°C in Benzol 11 Minuten ($E_a = 97.4$ kJ/mol; $\Delta H^{\pm} = 94.2$ kJ/mol; $\Delta G^{\pm} = 111.0$ kJ/mol bei 94°C), die Aktivierungsentropie ist, wie bei einem intramolekularen Umlagerungsprozeß zu erwarten, negativ ($\Delta S^{\pm} = -45.6$ J/mol · Grad bei 94°C).

Die Isomerisierung der betreffenden 2-Tetrazene (allgemein $6a \neq 6b$) dürfte unter 1,3-Substituentenumlagerung zunächst zu (energiereichen) 1-Tetrazenen 7a führen (intramolekulare 1,4-Substituentenumlagerungen sind räumlich unmöglich), welche dann – möglicherweise dyotrop¹⁰⁾ – in isomere 1-Tetrazene 7b übergehen, die sich ihrerseits unter 3,1-Substituentenumlagerung zu 2-Tetrazenen **6b** reorganisieren (Schema 2).

Schema 2. Isomerisierung silylierter, germylierter und stannylierter Tetrazene

Unbekannt bleibt hierbei, ob zunächst Wasserstoff oder eine Me₃E-Gruppe wandert. Die Lage des Gleichgewichts **6a** \rightleftharpoons **6b** hängt naturgemäß von den Substituenten ab. Offensichtlich bilden sich im Fall teilsilylierter Tetrazene bevorzugt Isomere mit Aminogruppen, die wenigstens eine Silylgruppe tragen. So lagert sich etwa **2a** vollständig in **2b** (E = Si), **4a** vollständig in **4b** oder (Me₃Si)₂N₄(GeMe₃)₂ zu ca. 70% in (Me₃Si)(Me₃Ge)N₄(SiMe₃)(GeMe₃)⁶) um. Die Geschwindigkeit der Isomerisierung **6a** \rightleftharpoons **6b** nimmt in den vorliegenden Fällen in der Reihenfolge **2a** (E = Si) > **4a** > (Me₃Si)₂N₄(GeMe₃)₂ ab.

Bezüglich der Silylierung, Germylierung und Stannylierung teilsubstituierter Tetrazene mit Me₃ENR₂ (E = Si, Ge, Sn) vgl. das Kapitel Darstellung.

Thermolyse von $(Me_3E)_n N_4 H_{4-n}$

Die teilsubstituierten Tetrazene $(Me_3E)_n N_4 H_{4-n}$ (n = 1-3) sind thermolabiler als entsprechende vollsubstituierte Tetrazene (n = 4), und ihre Stabilität sinkt mit abnehmender Zahl *n* der Me_3E-Gruppen und offenbar in der Richtung der Verbindungen mit E = Si > Ge > Sn (vgl. hierzu weiter unten sowie Lit.⁶).

Wie bisherige Untersuchungen mit vollsubstituierten Tetrazenen darüber hinaus lehren⁶⁾, zersetzen sich 2-Tetrazene entweder radikalisch auf dem Thermolyseweg (1) sowie (2) oder nichtradikalisch auf dem Thermolyseweg (3) sowie (4).

Schema 3. Wege der thermischen Zersetzung von Tetrazenen

$$N-N=N-N \longrightarrow N+N\equiv N+N$$
(1)

$$-N=N-N-N \qquad + N\equiv N + N-N \qquad (2)$$

$$N \equiv N + N - N$$
 (3)

$$\longrightarrow -N=N=N + -N$$
(4)

Die gebildeten Radikale sättigen sich ihrerseits durch Wasserstoffaufnahme aus der chemischen Umgebung ab. So zersetzt sich etwa das Tetrasilyltetrazen (Me_3Si)₄ N_4 nach 1. Reaktionsordnung mit einer Halbwertszeit von ca. 1 h bei 190°C, wobei sich die Thermolyse zu über 80% gemäß Thermolyseweg (1) abwickelt⁶:

Zum Unterschied von $(Me_3Si)_4N_4$ zerfällt das *dreifach substituierte Tetrazen* 1 (E = Si) zu 84% gemäß Thermolyseweg (4) in Me_3SiN_3 und $(Me_3Si)_2NH$ (14% Thermolyse gemäß (1), 2% gemäß (3)):

$$\begin{array}{c} Me_{3}Si \\ Me_{3}Si \\ Me_{3}Si \\ H \\ 1 (E = Si) \end{array} SiMe_{3} \longrightarrow Me_{3}Si - N = N = N + Me_{3}Si - N \\ H \\ \end{array}$$

In entsprechender Weise, aber etwas rascher thermolysiert das Tetrazen **4a** über **4b** (s. o.) sogar fast ausschließlich nach (4), und zwar zu 74% in Me₃GeN₃ und (Me₃Si)₂NH und zu 26% in Me₃SiN₃ und (Me₃Si)(Me₃Ge)NH. Die Disilylstannyltetrazene **5a** und **5b** dismutieren demgegenüber gemäß $2 5a \rightleftharpoons (Me_3Si)_2N_4(SnMe_3)_2 + 2a$ (E = Si) und $2 5b \rightleftharpoons (Me_3Si)(Me_3Sn)N_4(SiMe_3)(SnMe_3) + 2b$ (E = Si), so daß sich ihre Thermolyse nicht studieren läßt. Auch im Fall von 1 (E = Ge) beobachtet man ein entsprechendes Dismutierungsgleichgewicht $2 1 \rightleftharpoons (Me_3Ge)_4N_4 + (Me_3Ge)_2N_4H_2$.

Die wiedergegebene Thermolyse von 1 (E = Si) erfolgt nach 1. Reaktionsordnung, also unter intramolekularer Substituentenumlagerung. Die Thermolysehalbwertszeit beträgt bei 140 °C sowohl für (Me₃Si)₃N₄H als auch für (Me₃Si)₃N₄D in Benzol 44 Minuten, die Aktivierungsenergie 139.8 kJ/mol (ΔH^{+} = 136.3 kJ/mol; ΔG^{+} (140 °C) = 130.5 kJ/mol; ΔS^{+} = 14.0 J/mol · Grad).

Der einleitende Reaktionsschritt besteht im Fall der Thermolyse der erwähnten trisubstituierten 2-Tetrazene offensichtlich wie im Fall der 2-Tetrazenisomerisierung (Schema 2) in einer 1,3-Substituentenumlagerung unter Bildung (energiereicherer) 1-Tetrazene **8a** (Schema 4), welche direkt unter α -Eliminierung von Aminen oder indirekt nach Umlagerung in Konfigurationsisomere **8b** unter γ -Eliminierung von Aminen in Azide zerfallen (die ebenfalls denkbare Zersetzung von **8b** in Stickstoff unter β -Eliminierung von Hydrazin wird im Fall des zweifach substituierten Tetrazens **2b** (E = Si) beobachtet, s.u.). Wegen des höheren Energiegehalts der *cis*-Azoverbindungen und der vielfach sehr hohen Barrieren für einen Konfigurationswechsel¹¹) dürfte der direkte α -Zerfall von **8a** bevorzugt sein.

Schema 4. Nichtradikalischer Zerfall silylierter, germylierter und stannylierter 2-Tetrazene

Unbekannt bleibt wiederum, ob zunächst Wasserstoff oder eine Me₃E-Gruppe wandert. Der fehlende Isotopeneffekt spricht im Fall von 1 (E = Si) eher für eine Silylgruppenumlagerung gemäß: $1 \rightarrow (Me_3Si)N = N - N(SiMe_3) - NH(SiMe_3)$ (eine ebenfalls denkbare Umlagerung in $(Me_3Si)_2N - N(SiMe_3) - N = NH$ ist aus sterischen Gründen weniger wahrscheinlich).

Die Thermolyse der zweifach substituierten Tetrazene 2 ist recht verwickelt. So erfolgt die thermische Zersetzung von 2a (E = Si) parallel zur weiter oben erwähnten Verbindungsisomerisierung $2a \rightarrow 2b$ (E = Si) und führt gemäß Thermolyseweg (4) hauptsächlich (wenn nicht sogar ausschließlich) zu – seinerseits weiterreagierendem – Trimethylsilylazid und Trimethylsilylamin.

$$\begin{array}{cccc} & \underset{Me_{3}Si}{\overset{Me_{3}Si}{\underset{H}{\underset{H}{\underset{H}{\underset{H}{\atop{2a}(E = Si)}}}}} & \xrightarrow{Me_{3}Si-N=N=N + Me_{3}Si-N} & \underset{H}{\overset{H}{\underset{\frac{2}{3}Me_{3}SiN_{3} + \frac{2}{3}(Me_{3}Si)_{2}NH + \frac{1}{3}NH_{4}N_{3}}} \end{array}$$

Die Zersetzungshalbwertszeit verringert sich mit zunehmender Konzentration des Tetrazens beachtlich und beträgt bei Raumtemperatur für eine 0.1 M benzolische Tetrazenlösung ca. 160 h und für das reine Tetrazen ca. 1 h. Da die Isomerisierungshalbwertszeit unabhängig von der Konzentration des Tetrazens ist und sich zu ca. 200 h bei Raumtemperatur errechnet, spielt die Isomerisierung im Fall der Thermolyse von reinem **2a** (E = Si) praktisch keine Rolle. In verdünnter Lösung erfolgt die Isomerisierung bei Raumtemperatur demgegenüber vergleichbar rasch wie die Zersetzung, bei 100 °C sogar rascher als diese. Infolgedessen konkurrieren bei Raumtemperatur beide Reaktionen, während bei 100 °C praktisch ausschließlich Isomerisierung beobachtet wird.

Außer durch Konzentrationserhöhung wird die Geschwindigkeit der Zersetzung von **2a** (E = Si) auch durch Basen wie Dimethyl(trimethylsilyl)amin gesteigert. So zersetzt sich eine 0.3 M benzolische Tetrazenlösung in 4 Stunden bei Raumtemperatur ohne Me₃SiNMe₂ zu weniger als 5%, und mit stöchiometrischer Me₃SiNMe₂-Menge zu 86%.

Neben den in obiger Thermolysegleichung formulierten Zersetzungsprodukten Me_3SiN_3 , Me_3SiNH_2 , $(Me_3Si)_2NH$ und NH_4N_3 sowie dem Isomerisierungsprodukt **2b** (E = Si) bilden sich durch thermische Belastung von **2a** (E = Si) noch das Trisilyltetrazen **1** (E = Si) und Ammoniak in wechselnder, von der **2a**-Konzentration, der Thermolysetemperatur und der Thermolysedauer abhängiger Ausbeute. Hierbei entstehen **1** (E = Si) und NH₃ ähnlich wie $(Me_3Si)_2NH$ und NH_4N_3 durch Silylgruppenübertragungen zwischen **2a** (E = Si) und den aus **2a** primär hervorgehenden Produkten **2b** (E = Si), Me_3SiN_3 und Me_3SiNH_2 , z. B.: **2a** + **2b** \rightarrow **1** + **3** ($\rightarrow Me_3SiN_3 + NH_3$); **2a** + $Me_3SiNH_2 \rightarrow$ **1** + NH_3 ; 2 $Me_3SiNH_2 \rightarrow$ ($Me_3SiN_2 \rightarrow$ **H** + NH_3 ; $Me_3SiN_3 + 2 NH_3 \rightarrow$ $Me_3SiNH_2 + NH_4N_3$. (Auch bei der thermischen Belastung von **2a** (E = Ge) bildet sich neben **2b** (E = Ge) sowie NH_4N_3 noch **1** (E = Ge).)

Daß die **2a**-Zersetzung tatsächlich zunächst zu Me₃SiN₃ und Me₃SiNH₂ führt, folgt nicht nur daraus, daß sich zu Thermolysebeginn praktisch nur die erwähnten Produkte bilden, sondern auch aus der Zersetzung konzentrierter Benzollösungen von **2a** (E = Si) bei Raumtemperatur in Anwesenheit stöchiometrischer Mengen von *N*,*N*-Bis(trimethylsilyl)acetamid, CH₃CON(SiMe₃)₂. Als starkes Silylierungsmittel wandelt letztere Verbindung das thermolytisch zunächst entstehende Amin Me₃SiNH₂ rasch in (Me₃Si)₂NH um, so daß es nicht mehr für Folgereaktionen zur Verfügung steht. Demgemäß erhält man nur noch Me₃SiN₃ und (Me₃Si)₂NH neben größeren, durch Silylierung von **2a** (E = Si) mit CH₃CON(SiMe₃)₂ gebildeten Mengen an **1** (E = Si).

Einen weiteren Beweis für den formulierten Thermolyseverlauf liefert die Zersetzung konzentrierter Benzollösungen von **2a** (E = Si) bei Raumtemperatur in Anwesenheit von Dimethyl(trimethylsilyl)amin, Me₃SiNMe₂, welches nicht als Silylierungsmittel bezüglich **2a** wirkt, den **2a**-Zerfall aber (zum Unterschied von CH₃CON(SiMe₃)₂) – wie erwähnt – basenkatalysiert. Da die Folgereaktionen des durch **2a**-Zersetzung gebildeten Amins Me₃SiNH₂ nicht beschleunigt werden, erhält man aus **2a** unter diesen Bedingungen zunächst im wesentlichen nur Me₃SiN₃ und Me₃SiNH₂ (Me₃SiNH₂ wird von Me₃SiNMe₂ sehr langsam silyliert).

Die katalytische Wirksamkeit von Me₃SiNMe₂ macht es wahrscheinlich, daß auch die durch Thermolyse von **2a** (E = Si) gebildeten Amine Me₃SiNH₂ und NH₃ die **2a**-Zersetzung katalysieren. Darüber hinaus erscheint es denkbar, daß **2a** als Base seine eigene Zersetzung beschleunigt. Die Abnahme der Thermolysehalbwertszeit mit zunehmender **2a**-Konzentration fände so eine Erklärung. Die "unkatalysierte Thermolyse" von **2a** bestünde dann in einer Umlagerung in das Isomere **2b** (E = Si) und dessen nun zu behandelnden thermischen Zerfall.

Reines 2b (E = Si) ist wesentlich thermostabiler als reines 2a (E = Si) (2a: vollständiger Zerfall bei Raumtemperatur in ca. 1 Stunde; 2b: ca. 1 Woche). Auch erfolgt die Zersetzung der reinen Tetrazene bei Raumtemperatur letztendlich nach einer anderen Reaktionsstöchiometrie.

3 2a (E = Si)
$$\longrightarrow$$
 Me₃SiN₃ + (Me₃Si)₂NH + NH₄N₃ + 1 (E = Si)
3 2b (E = Si) \longrightarrow 2 Me₃SiN₃ + 2 (Me₃Si)₂NH + NH₄N₃

Der Primärschritt der **2b**-Thermolyse besteht hierbei in einem Zerfall in Stickstoffwasserstoffsäure und Bis(trimethylsilyl)amin gemäß Thermolyseweg (4); beide Verbindungen setzen sich dann ihrerseits weiter miteinander um.

In Lösung zersetzt sich **2b** (E = Si) darüber hinaus gemäß Thermolyseweg (3) in Stickstoff und 1,1-Bis(trimethylsilyl)hydrazin, wobei sich das gebildete Hydrazin unter den Reaktionsbedingungen langsam in 1,2-Bis(trimethylsilyl)hydrazin umlagert.

Das Ausmaß der $N_2/(Me_3Si)_2N_2H_2$ -Bildung vergrößert sich hierbei mit abnehmender Konzentration des Tetrazens. In gleicher Richtung wirkt sich eine Erhöhung der Thermolysetemperatur aus. So beträgt der prozentuale Anteil der $N_2/(Me_3Si)_2N_2H_2$ -Bildung im Fall der Thermolyse von reinem **2b** bei Raumtemperatur 0% und bei 140°C 20%, im Fall der Thermolyse einer 0.1 M benzolischen **2b**-Lösung bei Raumtemperatur ca. 70%. Mit wachsender **2b**-Verdünnung erniedrigt sich darüber hinaus die Thermolysegeschwindigkeit; z. B. zersetzt sich reines **2b** bei 140°C in 4 Stunden, eine 0.1 M benzolische **2b**-Lösung erst in 24 Stunden vollständig.

Die Ergebnisse sprechen aus den gleichen Gründen wie bei 2a (E = Si) für eine (Basen-)Eigenkatalyse der 2b-Zersetzung in HN₃ und (Me₃Si)₂NH. Tatsächlich beschleunigt die Base Me₃SiNMe₂ den Azid/Amin-Zerfall des Tetrazens, so daß selbst verdünnte 2b-Lösungen praktisch nicht mehr in N₂ und (Me₃Si)₂N₂H₂ thermolysieren.

Auch zersetzt sich eine 0.15 M, also verdünnte **2b**-Lösung in Pentan bei 120°C zunächst im wesentlichen unter Bildung von $N_2/(Me_3Si)_2N_2H_2$ (z. B. 90proz. Ausbeute nach 25proz. Thermolyse) und erst im weiteren Thermolyseverlauf zunehmend auch unter Bildung von $NH_3/(Me_3Si)_2NH$.

Daß 2b (E = Si) im Zuge des Thermolyseweges (4) primär in HN_3 und $(Me_3Si)_2NH$ und nicht wie 2a (E = Si) in Me_3SiN_3 und Me_3SiNH_2 zerfällt, folgt aus der Abwesenheit von Me_3SiNH_2 im Thermolysegemisch selbst nach kurzen Reaktionszeiten. Einen weiteren Beweis liefert die Thermolyse von 2b (E = Si) in Anwesenheit stöchiometrischer Mengen des Amins Me_3SiNMe_2 , welches gebildete HN_3 rasch in Trimethylsilylazid umwandelt und so dem weiteren Reaktionsgeschehen entzieht. Demgemäß bildet sich unter diesen Bedingungen kein NH_4N_3 -Niederschlag.

Auffallenderweise wandelt sich das symmetrische Tetrazen **2b** (E = Si) unter N₂-Eliminierung in ein asymmetrisches Hydrazin (Me₃Si)₂N – NH₂ um. Somit verwandelt sich **2b** offenbar zu einem kleinen Prozentsatz in Umkehrung seiner Bildung aus **2a** (E = Si) wieder in **2a** zurück (vgl. Schema 2; a = Me₃Si; b = H). Aus noch unverstandenem Grunde zersetzt sich hierbei die Zwischenstufe **7a** rascher als **7b** unter β -Eliminierung von (Me₃Si)₂N – NH₂ in N₂. Möglicherweise erfolgt der als Voraussetzung für einen nichtradikalischen Zerfall in Stickstoff und Hydrazin notwendige Konfigurationswechsel (vgl. Schema 4) nur ausgehend von **7a** genügend rasch.

Die "unkatalysierte Thermolyse" von 2b (E = Si) besteht nach dem Besprochenen in der Bildung von N₂ und (Me₃Si)₂N₂H₂ (Thermolyseweg (3)). Sie unterscheidet sich von der Zersetzung des Tetrazens 1 (E = Si), die – ebenfalls "unkatalysiert" – auf dem Thermolyseweg (4) verläuft. Thermodynamisch ist der Thermolyseweg (3) sicher günstiger als (4). Offensichtlich ist aber die Umwandlung von 1 (E = Si) in N₂ und (Me₃Si)₃N₂H aus sterischen Gründen kinetisch gehemmt.

In geringem Umfang zersetzt sich **2b** (E = Si) bei mittleren Konzentrationen zusätzlich nach der Summengleichung: **2b** (E = Si) \rightarrow (Me₃Si)₂NH + $\frac{1}{3}$ NH₃ + $\frac{4}{3}$ N₂. Der Produktbildungsweg ist bislang unklar.

Das einfach substituierte Tetrazen 3 (E = Si) ist sehr thermolabil. Lösungen in Dichlormethan zersetzen sich bereits ab ca. -40 °C unter Bildung von Trimethylsilylazid, Bis(trimethylsilyl)amin sowie Ammoniumazid⁴⁾. Somit erfolgt der Zerfall gemäß Thermolyseweg (4) wie folgt: 3 (E = Si) $\rightarrow \{HN_3 + Me_3SiNH_2 \text{ und/oder } Me_3SiN_3 + NH_3\} \rightarrow \frac{1}{3}$ Me₃SiN₃ + $\frac{1}{3}$ (Me₃Si)₂NH + $\frac{2}{3}$ NH₄N₃.

Wir danken der Deutschen Forschungsgemeinschaft für eine finanzielle Unterstützung der beschriebenen Untersuchungen durch Bereitstellung von Personal- und Sachmitteln.

Experimenteller Teil

Arbeitsmethoden: Alle Untersuchungen wurden unter Ausschluß von Wasser und Luft durchgeführt. $(Me_3Si)_4N_4^{60}$, $(Me_3Ge)_4N_4^{60}$, $(Me_3Si)_2N_4(GeMe_3)_2^{40}$, $(Me_3Si)(Me_3Ge)N_4(SiMe_3)(GeMe_3)^{40}$, $(Me_3Si)_3N_4Li^{30}$, $(Me_3Si)_2N_4(SnMe_3)_2^{40}$, $(Me_3Si)(Me_3Sn)N_4(SiMe_3)^{(3)}$, $Me_3SiNMe_2^{120}$, $Me_3GeNMe_2^{130}$, $Me_3GeNEt_2^{140}$, Me_3GeCl^{150} , $CH_3CON(SiMe_3)_2^{160}$ wurden nach Literaturvorschriften dargestellt. – ¹H-NMR-Spektren: Varian A 60 A. – IR-Spektren: Perkin-Elmer Gitterspektrometer 325. – Massenspektren: Varian MAT CH 7.

Nachweis entstandener Verbindungen: Molekularer Stickstoff wurde volumetrisch nach Abpumpen mittels einer Toeplerpumpe bestimmt. Die quantitative Analyse von NH_3 , N_2H_4 , HN_3 erfolgte gemäß Lit.¹⁷). Die Molmassen neugewonnener Verbindungen wurden massenspektrome-

trisch überprüft. Zur Bestimmung der Gleichgewichtskonstante und Aktivierungsparameter der Umlagerung von 2a (E = Si) sowie der thermischen Zersetzung von 1 (E = Si) wurden die zeitlichen Abnahmen der Edukt-Konzentrationen bei verschiedenen Temperaturen ¹H-NMR-spektrometrisch gemessen. Durch ¹H-NMR-Vergleich (Me₃E-Protonen) mit authentischen Proben in Diethylether (E) oder Benzol (B) wurden identifiziert (δ -Werte in ppm, iTMS)^{4,6}): Me₃SiNH₂ (E: 0.02; B: 0.04), (Me₃Si)₂NH (E: 0.05; B: 0.09), Me₃SiN₃ (E: 0.22; B: -0.06), (Me₃Si)(Me₃Ge)NH (B: 0.13, 0.23), Me₃GeN₃ (E: 0.48; B: 0.15), Me₃SiNMe₂ (E: 0.01; B: 0.05), Me₃GeNMe₂ (E: 0.17; B: 0.14), Me₃SnNEt₂ (E: 0.16; B: 0.13), 1,1-(Me₃Si)₂N₂H₂ (E: 0.07; B: 0.12), 1,2-(Me₃Si)₂N₂H₂ (E: 0.00; B: 0.04), (Me₃Si)₃N₂H (E: 0.10; B: 0.12) und 0.14; Flächenverhältnis 1: 2), MeCON(SiMe₁)₂ (B: 0.23), MeCONH(SiMe₁) (E: 0.17; B: 0.18).

Darstellung von 1-3 (E = Si bzw. Ge): Vgl. Lit.⁴). Die Synthese von N-deuteriertem 1 (E = Si) erfolgte aus (Me₃Si)₄N₄ und CF₃CO₂D gemäß der für undeuteriertes 1 (E = Si) erarbeiteten Methode⁶) in Glasgefäßen, die zunächst mit D₂O-Dampf behandelt worden waren. Das durch Destillation gereinigte Tetrazen 1 (E = Si) bestand zu 55% aus N-deuteriertem und zu 45% aus nicht deuteriertem Tris(trimethylsilyl)tetrazen.

Darstellung von 4-(Trimethylgermyl)-1, 1-bis(trimethylsilyl)tetrazen (4a): Man tropft zu 0.24 g (1.18 mmol) 2a (E = Si) in 2 ml Pentan bei $-10^{\circ}C$ 0.19 g (1.18 mmol) Me₃GeNMe₂ in 2 ml Pentan und zieht nach langsamem Erwärmen des Reaktionsgemisches auf 0°C alles i. Hochvak. Flüchtige ab. Die fraktionierende Destillation des Rückstandes liefert bei 40°C/Hochvak. 0.31 g (0.96 mmol, 89%) farbloses 4a (Charakterisierung s. Tab. 1).

C₉H₂₈GeN₄Si₂ (321.1) Ber. C 33.66 H 8.79 N 17.45 Gef. C 33.96 H 8.26 N 16.85

Darstellung von 1-(Trimethylgermyl)-1,4-bis(trimethylsilyl)tetrazen (4b): Man versetzt eine Lösung von 0.841 g (4.00 mmol) (Me₃Si)HN₄(SiMe₃)Li²⁾ in 10 ml Diethylether bei 0°C mit 0.612 g (4.00 mmol) Me₃GeCl und filtriert nach Erwärmen des Reaktionsgemisches auf Raumtemp. gebildetes LiCl ab. Nach Abkondensation des Lösungsmittels führt die fraktionierende Destillation des Rückstandes bei 50 – 70°C i.Ölpumpenvak. zu 1.25 g (3.90 mmol, 97%) 4b (Charakterisierung s. Tab. 1).

C₉H₂₈GeN₄Si₂ (321.1) Ber. C 33.66 H 8.79 N 17.45 Gef. C 34.78 H 8.09 N 17.26

4b bildet sich – laut ¹H-NMR-Spektrum – auch bei der vorsichtigen Methanolyse eines Gemisches von $(Me_3Si)_2N_4(GeMe_3)_2$ und $(Me_3Si)(Me_3Ge)N_4(SiMe_3)(GeMe_3)$ in Benzol (Molverhältnis MeOH: Tetrazen = 4) in ca. 20proz. Ausbeute neben 2a und b (E = Si). Wegen der vergleichbaren Siedepunkte von 4b und 2 konnte das auf diese Weise gebildete 4b nicht isoliert werden.

Darstellung von 1, 1-Bis(trimethylsilyl)-4-(trimethylstannyl)tetrazen (5a) und 1, 4-Bis(trimethylsilyl)-1-(trimethylstannyl)tetrazen (5b): Man tropft zu 0.46 g (2.26 mmol) 2a bzw. 2b (E = Si) in 10 ml Pentan bei -10° C 0.44 ml (2.26 mmol) Me₃SnNEt₂ in 10 ml Pentan. Laut ¹H-NMR-Spektrum, welches nach 1 h Reaktionszeit aufgenommen wurde, bildet sich hierbei 5a bzw. 5b in ca. 90proz. Ausb. neben 5% (Me₃Si)₂N₄(SnMe₃)₂ bzw. (Me₃Si)(Me₃Sn)N₄(SiMe₃)(SnMe₃) und 5% nicht umgesetztem 2a bzw. 2b (E = Si). Beim Stehenlassen der Reaktionslösung bzw. beim Abkondensieren von Pentan und Me₃SiNEt₂ dismutieren 5a weitgehend und 5b etwa zur Hälfte gemäß: 2 5a \neq (Me₃Si)₂N₄(SnMe₃)₂ + 2a (E = Si) und 2 5b \neq (Me₃Si)(Me₃Sn)N₄(SiMe₃)-(SnMe₃) + 2b (E = Si). Eine destillative Isolierung von 5a und b gelingt nicht, da als Folge der Abdestillation der leichtest flüchtigen Komponente 2a und b die Isomerisierungsgleichgewichte vollständig nach rechts verschoben werden (Charakterisierung von 5a und b s. Tab. 1).

Isomerisierung von 2a (E = Si): Beim 1stdg. Erhitzen einer 0.1 M Lösung von 2a in Pentan oder Benzol auf 100 °C bildet sich – laut ¹H-NMR-Spektrum – das Tetrazen 2b in quantitativer Ausbeute. Bezüglich der kinetischen Daten der Umlagerung 2a \rightarrow 2b vgl. allgemeinen Teil.

Thermolyse von 1 (E = Si): Bei der 10stdg. Thermolyse von 27.7 g (100 mmol) 1 (E = Si) in 100 ml Benzol (abgeschlossenes Bombenrohr) bei 140°C entwickeln sich 17.4 mmol N₂. Die Thermolyselösung enthält – laut ¹H-NMR-Spektrum – hauptsächlich (Me₁Si)₂NH (100 mmol) und Me₃SiN₃ (85 mmol) neben wenig (Me₃Si)₃N₂H (ca. 2 mmol) und nicht identifizierten Produkten. Die Silylstickstoffverbindungen wurden nach Abkondensation von Benzol massenspektrometrisch qualitativ und nach Protolyse des Gesamtthermolysegemisches mit $2 \times H_2SO_4$ in Form von NH_3 , N_2H_4 und HN_3 quantitativ erfaßt: 98.0 mmol NH_3 , 83.8 mmol HN_3 und 2.0 mmol N_2H_4 . Unter Berücksichtigung der gebildeten N2-Menge folgt somit, daß von 400 mmol Stickstoffatomen (eingesetzt in Form von 100 mmol 1, (E = Si)) 388 mmol in die identifizierten und mithin 12 mmol in nicht identifizierte Produkte übergehen. Darüber hinaus weisen die analytischen Daten auf folgende Reaktionswege der thermischen Zersetzung von 1 (E = Si): $1 \rightarrow Me_3SiN_3 +$ $(Me_3Si)_2NH$ (83.8%); $1 \rightarrow N_2 + (Me_3Si)_1N_2H$ (2%); $1 \rightarrow (Me_3Si)_2N^* + N_2 + "NH(SiMe_3)$ (14.2%). Die gebildeten Radikale sättigen sich zum Teil durch Wasserstoff aus der chemischen Umgebung (\rightarrow (Me₃Si)₂NH und Me₃SiNH₂ ($\rightarrow \frac{1}{2}$ (Me₃Si)₂NH + $\frac{1}{2}$ NH₃)), zum Teil auf andere Weise (→ nicht identifizierte Produkte) ab. Bezüglich der kinetischen Daten der Thermolyse von 1 (E = Si) vgl. allgemeinen Teil.

Anmerkung: Die Thermolyse von 1 (E = Si) in Benzol wird durch Me_3GeNMe_2 nicht beeinflußt. Me_3GeNMe_2 setzt sich allerdings mit gebildetem Me_3SiN_3 zu Me_3GeN_3 und Me_3SiNMe_2 um. Bezüglich des Zerfalls von 1 (E = Si) nach dessen Überführung in das Tetrazenid ($Me_3Si)_2N_4Li(SiMe_3)$ durch Lithiumorganyle vgl. Lit.²).

Thermolyse von 4: Beim 10stdg. Erhitzen von 3.21 g (10.0 mmol) 4a in 20 ml Benzol (abgeschlossenes Bombenrohr) auf 100 °C bildet sich – laut ¹H-NMR-Spektrum – auf dem Wege über 4b Me₃GeN₃ und (Me₃Si)₂NH (jeweils ca. 8 mmol) sowie Me₃SiN₃ und (Me₃Si)(Me₃Ge)NH (jeweils ca. 2 mmol). Es entwickeln sich 0.3 mmol N₂. Entsprechende Produktmengen erhält man bei der 10stdg. Thermolyse von 3.21 g (10.0 mmol) 4b in 10 ml Benzol bei 100 °C. Nach 5 – 6stdg. Thermolyse ist 4b hierbei zu ca. 75% zerfallen, so daß die Thermolysehalbwertszeit also um 3 h beträgt.

Thermolyse von 2a (E = Si): Benzollösungen von 2a (E = Si) zersetzen sich – laut ¹H-NMR-Spektrum – bereits bei Raumtemp. in 1 (E = Si), 2b (E = Si), Me₃SiN₄, (Me₃Si)₂NH und Me₃SiN₃. Darüber hinaus entstehen NH₃ und HN₃, erkenntlich an der Bildung eines flockigen NH₄N₃-Niederschlags. Die Zersetzungshalbwertszeit $\tau_{1/2}^{RT}$ von 2a (E = Si) erniedrigt sich mit zunehmender Tetrazenkonzentration c_{2a} ; die Produktverteilung hängt ebenfalls von c_{2a} , darüber hinaus von der Reaktionszeit $t_{Reakt.}$ ab (Tab. 2).

Bei der 4stdg. Thermolyse einer 0.3 M Benzollösung von 2a (E = Si) in Anwesenheit von Dimethyl(trimethylsilyl)amin (Molverhältnis 2a: Me₃SiNMe₂ = 1:1) bei Raumtemp. zersetzt sich das Tetrazen – laut ¹H-NMR-Spektrum – zu 86% (ohne Me₃SiNMe₂: < Sproz. Umsatz). Es bilden sich Me₃SiN₃ und Me₃SiNH₂ in nahezu äquimolaren Mengen (ca. 80%) sowie geringe Mengen (Me₃Si)₂NH (ca. 4%). Lange Reaktionszeiten führen zu wachsenden Mengen an (Me₃Si)₂NH (Silylierung von Me₃SiNH₂ durch Me₃SiNMe₂).

Bei der 18stdg. Thermolyse einer 1.1 M Benzollösung von **2a** (E = Si) in Anwesenheit von N, N-Bis(trimethylsilyl)acetamid (Molverhältnis **2a**: CH₃CON(SiMe₃)₂ = 1:1) bei Raumtemp. zersetzt sich das Tetrazen – laut ¹H-NMR-Spektrum – zu 54% in Me₃SiN₃ und (Me₃Si)₂NH (durch Silylierung aus Me₃SiNH₂). Darüber hinaus bildet sich **1** (E = Si) in 46proz. Ausb. (durch Silylierung von **2a**).

Bei der Thermolyse einer 0.7 M Benzollösung von 2a (E = Si) in Anwesenheit von 2b (E = Si) (Molverhältnis 2a: 2b = 2: 1) bei Raumtemp. bildet sich – laut ¹H-NMR-Spektrum – zunächst 1 (2a + 0.5 2b \rightarrow 1 + N₄H₄ (zerfällt weiter⁵))), welches langsam thermolysiert (s.o.).

11
E
28
von
lyse
hermol
F
Tab. 2

2898

			1	1 a.0. 2. 1 11C						
c2ª [mol/]]	≈ <mark>t</mark> 1/2 [h]	freakt. [h]	2a [mmol] ^{a)}	2 b	nmo	I Thermolysepi Me ₃ SiNH ₂	odukte pro 100 (Me ₃ Si) ₂ NH	mmol 2a (F Me ₃ SiN ₃	z = Si) NH ₄ N ₃ b)	(q [£] HN
0.10	160	48	83	10	1	2	2	5	1	1
		190	43	26	9	8	6	24	1	10
		450	I	32	6	12	22	53	9	19
0.22	85	280	1	22	9	12	32	62	10	18
0.50	30	160	ł	7	Ŷ	8	50	58	29	I
1.10	10	115	I	5	11	7	46	58	30	ι
Rein-	<u>1</u> c)	∽I≘	62	1	13	11	ę	18	2	10
subst.	•	2 r	24	2	28	12	6	34	6	15
		1 1 1 1 1	Ι	1	33	10	26	37	30	I
				140. 3. 1110						
^C 2b [mol/l]	(Reakt. ^{a)} [h]	$\mathbf{Z}_{\mathbf{Z}}$	mmol Thermoly (Me ₃ Si) ₂ N ₂ H ₂ (N	/seprodukte 1e ₃ Si) ₂ NH	pro 100 mmo Me ₃ SiN ₃	$ 2b (E = Si) NH_3^{b}$	(q ^E NH	¶0 A c)	Thermolyse gei B ^{c)}	näß C ^{c)}
0.1	24	78	69	24	14	6	11	69	24	2
1.0	14	99	48	39	26	18d)	17d)	48	38	14
2.5	8	4:	26	53	42	25	20	26	62	12
Rein-	4	22	20	2	52	24	24	20	78	2
subst.	e)	1	4	67	67	33	33	I	100	1
^{a)} Jeweils vo (Me ₃ Si) ₂ N – tell gefunder	ollständige Thei NH ₂ ; B: $2b \rightarrow 0$ 1: 13 mmol NH	molyse von (Me ₃ Si) ₂ NH 1, 13 mmol	1 2b (E = Si) bei $(+ HN_3 \rightarrow \frac{2}{3} (Me_3 + HN_3 - e) \frac{1}{1} Woc$	140°C. – Si) ₂ NH + 5 he bei Raun	^{b)} Berechnet Me ₃ SiN ₃ + ntemperatur.	unter der Ann <u> <u> </u> 1 NH₄N₃; C: 2</u>	ahme, daß nur $\mathbf{b} \rightarrow (Me_3Si)_2N_1$	$N_2 H_4$ vorlie H + $\frac{1}{3}$ NH ₃	$gt c) A: 2b + \frac{4}{3} N_2 \cdot - d) E$	→ N ₂ + xperimen-

Thermolyse von 2b (E = Si): Bei der 14stdg. Thermolyse von 10 mmol 2b (E = Si) in 10 ml Benzol (abgeschlossenes Bombenrohr) bei 140 °C entwickeln sich 6.4 mmol N_2 , und es bildet sich ein NH₄N₃-Niederschlag. Die Thermolyselösung enthält – laut ¹H-NMR-Spektrum – folgende silylhaltigen Produkte: (Me₃Si)₂N-NH₂ (3.3 mmol), (Me₃Si)HN-NH(SiMe₃) (1.5 mmol), (Me₃Si)₂NH (3.9 mmol) und Me₃SiN₃ (2.6 mmol). Die gebildeten Verbindungen wurden massenspektrometrisch sowie durch Vergleich mit authentischen Proben qualitativ und nach Protolyse des Gesamtthermolysegemisches mit $2 \times H_2SO_4$ in Form von NH_3 , N_2H_4 und HN_3 quantitativ erfaßt: 5.2 mmol NH3, 4.6 mmol N2H4, 3.9 mmol HN3. Mit letzteren Daten folgt unter Berücksichtigung der gebildeten N₂-Menge, daß von 40.00 mmol Stickstoffatomen (eingesetzt in Form von 10 mmol 2b, E = Si) 38.9 mmol analytisch erfaßt wurden. Wie sich aus der Differenz der Menge von silvliertem NH3, N2H4 sowie HN3 und der Gesamtmenge an erfaßtem NH3, N2H4 sowie HN₃ ergibt, enthielt das Gesamtthermolysegemisch neben 4.4 mmol (Me₃Si)₂NH, 4.4 mmol (Me₃Si)₂N₂H₂ und 2.4 mmol Me₃SiN₃ zusätzlich 1.3 mmol NH₃ und 1.3 mmol HN₃ (in Form von NH_4N_3).

Der prozentuale Anteil der Produkte der Thermolyse von 2b (E = Si) in Benzol bei 100°C hängt von der **2b**-Konzentration c_{2b} ab (nicht dagegen von der Thermolysetemperatur) (Tab. 3).

Der Anteil an $(Me_3Si)_2N - NH_2$ nimmt bei längeren Reaktionszeiten zu Gunsten des Anteils an $(Me_3Si)HN - NH(SiMe_3)$ ab. Als Reaktionsprimärprodukt bildet sich $(Me_3Si)_2N - NH_2$. Demgemäß bildet sich bei der 25proz. Thermolyse (20stdg. Erhitzen) einer verdünnten Lösung von 2b (E = Si) in Pentan (0.15 M) bei 120 °C hauptsächlich (zu 90%) Stickstoff und $(Me_3Si)_2N - NH_2$. In obiger Zusammenstellung ist aus diesem Grunde nur die Summe erhaltener mmol (Me₃Si)₂N - NH₂ und (Me₃Si)HN - NH(SiMe₃) aufgeführt.

Bei der 9stdg. Thermolyse einer 0.2 M Benzollösung von 2b (E = Si) in Anwesenheit von Dimethyl(trimethylsilyl)amin (Molverhältnis 2b: Me₃SiNMe₂ = 2:1) bei 70°C zersetzen sich 50% **2b** (E = Si); es bilden sich - laut ¹H-NMR-Spektrum - folgende Produkte (in Klammern mmol pro 100 mmol zersetztem **2b**, E = Si): $(Me_3Si)_2N_2H_2$ (11), $(Me_3Si)_2NH$ (59), Me_3SiN_3 (59). Ein NH₄N₃-Niederschlag tritt nicht auf.

Thermolyse von 3 (E = Si) vgl. Lit.⁴).

- ³⁾ N. Wiberg, G. Fischer und P. Karampatses, Angew. Chem. 96, 58 (1984); Angew. Chem., Int. Ed. Engl. 23, 59 (1984).
- 4) N. Wiberg, H. Bayer, S. K. Vasisht und R. Meyers, Chem. Ber. 113, 2916 (1980).
- 5) N. Wiberg, H. Bayer und H. Bachhuber, Angew. Chem. 87, 202 (1975); Angew. Chem., Int. Ed. Engl. 14, 177 (1975).
- 6) N. Wiberg, S. K. Vasisht, H. Bayer und R. Meyers, Chem. Ber. 112, 2718 (1979).
- ⁷⁾ N. Wiberg und W. Uhlenbrock, Chem. Ber. 105, 63 (1972).
- ⁸⁾ M. Veith, Acta Crystallogr., Sect. B 31, 678 (1975).
- 9) M. Veith und G. Schlemmer, Z. Anorg. Allg. Chem. 494, 7 (1982).
- ¹⁰⁾ M. T. Reetz, Adv. Organomet. Chem. 16, 33 (1977).
- 11) H. Keßler, Angew. Chem. 82, 237 (1970); Angew. Chem., Int. Ed. Engl. 9, 219 (1970).
- 12) A. W. Jarvie und A. D. Lewis, J. Chem. Soc. 1963, 1073.
- 13) G. T. A. Chandra und M. F. Lappert, Chem. Commun. 1967, 116; J. Mack und C. H. Yoder, Inorg. Chem. 8, 278 (1969). ¹⁴⁾ C. M. Wright und E. L. Muetterties, Inorg. Synth. 10, 137 (1967). ¹⁵⁾ N. Wiberg, S. K. Vasisht, G. Fischer und E. Weinberg, Chem. Ber. 109, 710 (1976).

- ¹⁶⁾ C. H. Yoder, W. C. Copenhofer und B. DuBeshter, J. Am. Chem. Soc. 96, 4283 (1974).
- 17) N. Wiberg, G. Fischer und H. Bachhuber, Chem. Ber. 107, 1456 (1974).

[359/83]

¹⁾ 11. Mitteil. über Tetrazen und seine Derivate; 10. Mitteil.: Lit.²⁾, Zugleich 57. Mitteil. über Verbindungen des Siliciums und seiner Gruppenhomologen; 56. Mitteil.: Lit.³⁾.

²⁾ N. Wiberg, H. Bayer und S. K. Vasisht, Chem. Ber. 114, 2658 (1981).